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Abstract

In this paper, we present a self-consistent simulation model
of beam-beam interaction in high energy accelerators. Us-
ing a parallel particle-in-cell approach, we have calculated
the electromagnetic fields between two colliding beams.
Dynamic load balance is implemented to improve the par-
allel efficiency. A preliminary performance test on IBM SP
Power3, Cray T3E and PC cluster is presented. As an ap-
plication, we studied the coherent beam-beam oscillation
in the proposed Large Hadron Collider.

1 INTRODUCTION

High energy accelerators are essential to study the inner
structure of nuclear and elementary particles in modern
physics. Inside a high energy accelerator, two charged par-
ticle beams moving with speed close to the speed of light
in opposite directions collide at interaction point. High lu-
minosity of two colliding beam is required in order to pro-
vide detailed understanding of physical phenomena such as
CP-violation. However, the electromagnetic interaction be-
tween two charged beams, i.e, beam-beam interaction, will
put a strong limit on the luminosity in the high energy ac-
celerators. An accurate simulation of the beam-beam inter-
action will help to optimize the luminosity in high energy
accelerators.

Beam-beam interaction has been studied in the past 30
years. Due to the typical computation cost required to accu-
rately simulate the beam-beam interaction for many turns
(10* to 10° turns), most of the previous studies used either a
simplified physical model, e.g. neglecting the electromag-
netic force of one beam [1, 2, 3, 4], or an approximated
computation model, e.g. assuming the Gaussian shape of
particle distribution or a pancake model [5, 6, 7, 8, 9, 10, ?].
To study the beam-beam interaction fully self-consistently
for both beams, and to include the physical processes
such as long range off-centroid interaction, the finite beam
bunch length effects, and crossing angle collision, will re-
quire the computation resource beyond the capability of
current serial computer. As far as we know, there is no
existing code that can simultaneously handle these physi-
cal processes accurately. In this paper, we present a par-
allel beam-beam simulation model which can study these
physical processes accurately by using high performance
computers.

The organization of the paper is the following: The phys-
ical mode and computation methods are described in Sec-
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tion 2. The parallel implementation is given in Section 3.
An application to the study of coherent beam-beam oscil-
lation in Large Hardon Collider (LHC) is given in Section
4. We summarize our preliminary results in Section 5.

2 PHYSICAL MODEL AND
COMPUTATION METHODS

In the high energy accelerators, each charged par-
ticle has a position in phase space with coordinate
(x,2',y,y',Az/o.,Ap,/o,.). Here, superscript prime
denotes 9/0s and s is the longitudinal position. The mo-
tion of the particle will be subject to the influence of ex-
ternal field, which provides the transverse and longitudinal
focusing of the beam. The particle will also lose its energy
through synchrotron radiation. This leads a process called
radiation damping and quantum excitation, which will af-
fect the particle motion inside accelerators. The Coulomb
interaction among charged particles within a bunch is neg-
ligible due to the cancellation of electric force and mag-
netic force at high speed. However, for the opposite mov-
ing charged particles, the electric force and magnetic force
will add up. This force can significantly affect the motion
of the charged particles in the other beam.

The effects of external field can be represented, in the
small-amplitude approximation, by a one-turn linear map,
i.e.
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where a,, 3, and -, are lattice functions at the interaction
point, and v, is horizontal lattice tune. A similar map
applies to the vertical phase space y and y' by replacing
x — y in above equation. For the longitudinal phase space,
the one-turn map is defined by
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where v, is the synchrotron tune.

The effects of radiation damping and quantum excita-
tion can be represented using a localized stochastic map.
For each particle, the map consists of the following trans-
formations [5]:
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where the ¢’s are the nominal rms equilibrium beam sizes
in each dimension, the A’s are given in terms of the
damping time 7 (measured in units of turns) by \; =
exp (—1/7;) where ¢ denotes z, y, or z, and the r’s are
independent random numbers satisfying
(i) = 0
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The first term in above transformation represents the radia-
tion damping, and the second term represents the quantum
excitation.

To calculate the electromagnetic force from beam-beam
interaction, we have used a multiple slice model. In this
model, each beam bunch is divided into a number of slices
in the longitudinal direction. Each slice contains nearly the
same number of particles at different longitudinal location
z. The collision point between two opposite slice 7 and j is
determined by
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The transverse coordinates of the particles at collision point
are given by
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Then the slopes of the particles are updated using the beam-
beam electromagnetic forces at the collision point follow-

ing
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where subscript 2, 1 represents contributions from beam 1
orbeam 2, v = 1/4/1 =62, 8; = vife, i = x,y,2, ¢
is the speed of light, ey is the vacuum permittivity, ¢ is
the charge of the particle, m is the rest mass of particle,
N is the number of particles in a bunch, and E, and E,
are the transverse electrical fields generated by the opposite
moving beam. After the collision, the particles of each slice
drift back to their original locations following
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Figure 1: Radial electric field as a function of radius.

The electrical field generated by the opposite moving
beam can be obtained from the solution of Poisson’s equa-
tion. The solution of Poisson’s equation can be written as

b(z,y) = / G(z,,y,9)p(z,7) dzdg  (21)

where G is the Green’s function, and p is the charge den-
sity. For the case of transverse open boundary conditions,
the Green’s function is given by:
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An FFT based method can be used to calculate the con-
volution efficiently [11]. In this algorithm, the particle do-
main and and the field domain are in the same computation
domain. In the beam-beam interaction, two opposite mov-
ing beams may not overlap with each other transversely.
The field domain generated by one beam bunch could be
different from the particle domain containing the beam. In
the paper, we have extended above FFT based algorithm
to handle this situation. The center of the field domain is
shifted to the center of the particle domain. Then, these two
domains are adjusted to be contained in the same compu-
tation domain. The Green function is modified to take into
account the center shift of field domain. From the shifted
Green function, we can compute the electrical potential in
the shifted field domain using the FFT based method. This
algorithm saves the requirement to contain the original par-
ticle domain and the field domain in one big computation
domain and is therefore more computationally efficient. To
test this algorithm, we calculated the radial electrical field
from O to 2R, generated by a round beam with Gaussian
density distribution and radius Rg. In this example, the par-
ticle domain is defined from — R to R, for z and y, and the
field domain is defined from 0 to 2Ry. Fig. 1 shows a com-
parison of the radial electrical field E, in the field domain
as a function of radius from analytical solution and from
above shifted Green function algorithm. The two solutions
agree with each other very well.
In the beam-beam interaction, the two beams can collide
with a crossing angle. A transformation is used to change
the crossing angle collision into a head-on collision. The



transformation is given by [4]
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where « is the crossing plane angle in the z — y plane, ¢
is the half crossing angle in the & — z plane, h = p, +
1- \/(pz +1)2—p2—-p2 hi = 32; h*(p3,py,p3), and
h*(py, Py p:) = h(py, Py PL)-

3 PARALLEL IMPLEMENTATION

We have employed a one-dimensional domain-
decomposition approach in the parallel implementation
of beam-beam simulation [12]. The physical domain is
decomposed along the y direction into a number of small
rectangular blocks. These blocks are mapped to a logical
one-dimensional Cartesian processor grid. Each processor
contains one rectangular block domain. The particles with
spatial positions within the local computational boundary
are assigned to the processor containing that part of the
physical domain. In the multiple slice model, each beam is
divided into a number of slices along z direction. Within
each slice, a mesh grid is defined to store the field-related
quantities such as charge density and electric field. A
guard grid outside each side of the physical boundary
is used as temporary storage of grid quantities from the
neighboring processors. The boundary grid is defined as
the outer-most grids inside the physical boundary.

The particles generated on each processor are advanced
using the one-term lattice map and damping and quantum
excitation map. At the interaction point, during the col-
lision, if a particle moves outside the local computational
domain, it is sent to the corresponding processor where it is
located. A particle manager function, implemented using
the message passing interface (MPI), is defined to handle
the particle movement and the inter-processor communica-
tion. The particle manager first checks the y position of
every particle on each processor. If this position is outside
the local computational domain, the particle is copied to
one of its two buffers and sent to one of its two neighbor-
ing processors. After a processor receives particles from its
neighbors, it determines whether some of them need to be
further sent out or not. The outgoing particles are counted
and copied into two temporary arrays. The remaining par-
ticles are copied into another temporary array. This process
is repeated until there is no outgoing particle found on all

processors. Then, the particles in the temporary storage,
along with the particles left in the original particle array,
are copied into a new particle array.

After each particle moves to its local computational
domain, a linear cloud-in-cell (CIC) particle-deposition
scheme is done for all processors to obtain the charge den-
sity on the grid. For the particles located between the
boundary grid and computational domain boundary, these
particles will also contribute to the charge density on the
boundary grids of neighboring processors. Hence, explicit
communication is required to send the charge density on
the guard grids, which is from the local particle deposition,
to the boundary grids of neighboring processors to sum up
the total charge density on the boundary grids. With the
charge density on the grids, the Poisson equation is solved
using a FFT based algorithm described in last section for
the open boundary condition. A parallel FFT can be done
along « direction simultaneously on all processors. To do
FFT along y direction, we have used a global all-to-all
communication to transpose distributed y component onto
local processor. Then FFT can be done along vy simultane-
ously on all processor. During the inverse FFT, a reverse
process is employed to obtain the potential on the original
grids.

From the potential on the grid, we calculate the electric
field on the grid using a central finite difference scheme. To
calculate the electric field on a boundary grid, the potential
on a boundary grid of neighboring processors is required.
A communication pattern similar to that employed in the
charge density summation on the boundary grids is used
to send the potential from the boundary grids to the guard
grids of neighboring processors. After the electric field
on the grids is obtained, it has to be interpolated from the
grids onto the local particles to advance the particles. Since
we have used the linear CIC scheme, the electric field of
particles between the boundary grid and computational do-
main boundary will also depend on the electric field on the
boundary grid of neighboring processors. A similar com-
munication pattern is used to send the electric field from
the boundary grids to the guard grids of the neighboring
processors. With the electric field on grids local to each
processor, the interpolation is done for all processors to ob-
tain the electromagnetic force on every particle from the
opposite moving beam. The local particles are updated in
momentum space using the beam-beam force.

Dynamic load balancing is employed with adjustable
frequency to keep the number of particles on each proces-
sor approximately equal. To determine the local boundary,
the two-dimensional density function is summed up along
the z direction to get the local one-dimensional charge den-
sity function along y. The local charge density function is
gathered along y direction to get a global y direction charge
density distribution function on each processor. Using this
global y direction density distribution, the local computa-
tional boundary in the y direction can be determined as-
suming that each processor contains a fraction of the total
number of particles about equal to 1/nproc. Here, nproc is
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Figure 2: Maximum and minimum number of particles per
processor with and without load balance.
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Figure 3: The time cost for 10 turns as a function of pro-
cessors on IMB SP Power3, Cray T3E, and PC cluster.

the number of processors along the y direction. Given the
new local computational boundary, the particles are moved
around among processors to their local physical domains.
Fig. 2 shows the maximum and minimum number of parti-
cles per processor with and without dynamic load balance.
With dynamic load balancing, the difference between the
maximum number of particles and the minimum number
of particles has been drastically reduced. As a preliminary
study results, Fig. 3 shows the execution time for 10 turns
as a function of the processor number on a SP Power3, a
Cray T3E-900 and a PC cluster for a fixed problem size.
Here, we have used 1 million particles for each beam. Each
beam is divided into 5 slices. For each slice, we have used
64 by 64 grid points. A reasonable scalability is achieved
only up to 16 processors. Beyond 16 processors, the exe-
cution time starts to saturate and even increase. The degra-
dation of performance with large number of processors is
due to the relatively small grid number (64) used in this
example. A significant fraction of computation time has
been spent on the communication among processors. The
small number of grids per processor when 32 processors
were used also results in a poor load balance for a Gaus-
sian density distribution which has most particles located
around the center of beam. For the given number of pro-
cessor, the SP Power3 costs the least time compared with
two other machines. This is because the peak performance
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Figure 4. The power spectrum of the = centroid of one
beam.

for the SP processor is 1.5 GFlops, and for the T3E is 900
MFlops. The PC cluster uses Pentium Il processor with
866 MHz clock speed.

4 APPLICATIONS

As an application, we have studied coherent beam-beam
dipole oscillation in the proposed Large Hadron Collider
(LHC). Two beams have the same physical parameters
moving in an opposite direction. The kinetic energy of
each beam is 7 TeV. The horizontal and vertical bare tunes
are 0.31. The beam-beam parameter £ is —0.0034. Here
& is defined as Z’;ff; and r, is classical proton radius.
Fig. 4 shows the powér spectrum of the x centroid motion
(same for y since it is assumed a round beam) in one beam.
The normalized frequency is defined as (v — vy0)/|€|. It
is seen that there exist two oscillation frequencies for the
centroid motion. One corresponds to the bare tune without
beam-beam interaction. This mode is called & mode. The
oscillation of this mode is in phase for two beams. The
other frequency is shifted towards the lower frequency by
(1.19 £ 0.03)|£|. This mode is called 7 mode. The os-
cillation of this mode is 180 degrees out of phase for two
beams. The frequency downshift has also been calculated
using a linearized Vlasov equation which gives 1.21£ [13].
We see that the simulation result agrees with the theoretical
calculation very well. Fig. 5 shows the RMS emittance as
a function of turns in the accelerator. No significant emit-
tance growth of the beam is observed after 9000 turns. In
this case, the coherent beam-beam tune shift is very weak
and will not cause any significant resonance crossing.

5 SUMMARY

In this paper, we have presented a parallel simulation model
to study beam-beam interaction in high energy acceler-
ators. The electromagnetic fields between two colliding
beams are calculated using a parallel particle-in-cell ap-
proach. Using high performance computers, we can study
the physical processes such as long range off-centroid col-
lision, finite bunch length effects, crossing angle collision
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in the beam-beam interaction which can not be done on a
serial computer. A preliminary performance test shows a
reasonable scalability up to 16 processors for a relatively
small problem size. A further performance study will be
carried out to improve the scalability of the code and will
be presented in the final version of paper. Dynamical load
balance has been implemented to reduce the difference of
particle distribution among processors. As an application,
we have studied the coherent beam-beam oscillation in the
proposed LHC. The mode frequency shift from our simu-
lation agrees very well with the theoretical analysis.
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